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Abstract

Flutter of an aeroelastic structure is potentially destructive aeroelastic instability. This phenomenon has

motivated research within the aeroelastic community to develop methods that can accurately predict aeroelastic

instabilities. The Flutterometer method used herein, and as developed by NASA DFRC, is based upon the _ method

which has been coupled with wavelet filtering processes in estimating aeroelastic models from flight data. The

approach leads to a methodology to predict the occurrence of flutter boundaries, and may prove to reliably predict
flutter boundaries during flight tests. An analytical model is used as the first estimate of the aeroelastic structural

dynamics, and uncertainty operators are introduced into the system to model variations between the theoretical

system and the physical system. The modelling uncertainties are then updated from experimental data. Although the
model used did not work well with this particular experiment, a sensitivity analysis was additionally performed and

improvements suggested.

Introduction

Aeroelasticity is the interaction of structural, inertial, and aerodynamic forces. Together, these forces may cause

a structure, such as an aircraft wing, to become unstable and undergo aeroelastic instabilities such as flutter. Among
the first to study this characteristic in detail was Theodorsen, and, along with Garrick 1'2, he predicted flutter

velocities and frequencies which were compared to experimental results. Several papers have been published on
flutter, including methods for its suppression 3'4'5'6. The exact velocity at which flutter occurs depends on the physical

properties of the structure and flow field around it. In the design of aircraft, the study of aeroelastic stability is
required in order to determine a safe flight envelope. Many areas have been identified by the flutter community for

developing an accurate flutter prediction method, including the time and cost associated with safely expanding the

flight envelope in which no aeroelastic instabilities occur 7'8. Several methods have been used in an attempt to predict
flutter. Some of these methods are briefly discussed in Reference 9, 10, and 11 and are presented below. A

traditional method analyses system parameters, such as damping to monitor aircraft stability. A prediction-error
method was used to estimate damping errors, and extended to use Kalman filtering as well as time-domain and

frequency-domain characteristics to estimate damping. But damping may be highly nonlinear as flight conditions
vary; therefore, damping trends may be of limited usefulness, as stability may be indicated at a test point, but may
not confidently be extrapolated to other flight conditions. Thus the flight envelope must be expanded slowly 12'13'14.

Another method considers the interaction of two modes participating in the flutter mechanism to utilize a

stability parameter that is varied quadratically with dynamic pressure iS. The technique considered several interacting

modes and demonstrated a predictive method for higher order instabilities. It was limited though in applicability for

general flight flutter testing because assuming only the coupling of a few modes and requiring their observation may
be too restrictive 16'17A8.

Stability parameters have also been introduced in flutter margin methods that consider an autoregressive moving
average process to describe aeroelastic dynamics 19'2°. While these margins .'areapplicable to complex systems and

require only turbulence for excitation, the flutter boundary is determined from the extrapolation of a nonlinear

function and may be misleading.



An approach currently being investigated is the use of a nominal model as the initial estimate of the properties of

the aeroelastic structure and the incorporation of flight data in the model development process using uncertainty

operators in a robust stability framework. The uncertainty operators are incorporated in the model through a linear

fractional transformation (LFT), and the robust stability parameter known as the structured singular value 2j, p, is
used to calculate flutter boundaries robust to these variations. In this manner, a worst-case flutter boundary is

computed which accounts for the flight data directly. Difficulties of estimating a higher order model from data of

low signal-to-noise ratio can be avoided, while time-varying dynamics are accounted for by updating the
uncertainties between the nominal and true model ]°. The use of the structured singular value has led to this approach

being dubbed "p-method", which is the basis of a flutter-prediction method called the "Flutterometer ''9'll. The

outcome may be immediately realized by on-line computing of robust flutter margins, with the result being the
"distance" to the flutter boundary, determined by the largest increase in dynamic pressure (hence, the corresponding

increase in velocity), for which the model is robustly stable.

Background on/z- Method Framework

Any aeroelastic model is an approximation of the true system dynamics, but inaccuracies in various model

parameters, as well as tmmodelled dynamics must be considered in any stability analysis as well as control

synthesis 8. The characteristics of the system model are considered under the influence of perturbations, which
contain the parameter uncertainties as well as any unmodelled dynamics or tmmeasured forces 7. The uncertainties

are described by an operator, A, contained within a set, A, which is norm bounded to reflect the limits of the

perturbation sizes. Weighting matrices are often introduced in the p framework in order to normalize the uncertainty

norm bound to unity. Thus, the perturbation set is defined as:

A: {A:HAL1} (l>

By the Small Gain Theorem TM, the robust stability of a plant model P containing uncertainties is guaranteed for the

set A if IIPL<1,thoughthis condition is sufficient but not necessary because it may be overly conservative with

respect to structured uncertainty. The equations of motion are rearranged into state-space form, and written as an

upper LFT with the uncertainty block structure A. The LFT (Figure 1) is formed with uncertainty over velocity,

h
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Figure 1. Linear Fractional Transformation block diagram with uncertainty matrix included.

A U , as well as parameter uncertainty, Apar, and dynamic uncertainty, Aa>.... (which contains sensor and actuator

uncertainties), thus achieving a robust aeroelastic model 3'2_'2z. The basis for the/1 method is the structured singular
value, which is det'med as:



1 (2)
P'_(P)=min{_(A):A _ A, det(l- PA)= 0}

and is a measure of the robustness of P with respect to A. The structured singular value, Pa (P), is a measure of

the smallest destabilizing perturbation of P such that I - PA is singular for some A E A. If no A e A exists that

makes I-PA singular, then Ha(P):=0. In effect, the inverse of /aA(P ) is the magnitude of the smallest

destabilizing perturbation A e A. For a unity norm bound set A, the system P is guaranteed to be robustly stable

if ,ua (P) < 17. The structured singular value is computed numerically as an upper and lower bound using the p-tools

software of MATLAB ®.

Model Validation

Robustness measurements are only meaningful if the uncertainty description of a given system model is realistic.

Too much uncertainty may cause an overly conservative measure of robustness, while too little uncertainty may
generate a robustness measure that does not consider the true errors in the model 7. It is necessary to validate any

given model against a set of experimental data in order to determine a reasonable set of uncertainties. A p-based

method s'm_ is used in this paper to validate the robust aeroelastic model of the airfoil pitch-plunge system, which

assumes a known model, P, and its associated uncertainty set, A. An uncertainty set is sought such that F u (P, A)

could generate a set of observed data, u (input) and y (output), in frequency space. The plant model is partitioned as
follows:

(3)

where PI_ is the transfer function from uncertainty input to uncertainty output, PJ2 the actuator input to uncertainty

output, P21 the uncertainty input to sensor output, and P22 the actuator input to sensor output, which is the nominal

plant transfer function. Define the following two matrices:

(4)

The model is not invalidated if the following is true:

p(Pu - _2P22 '/322) > 1 (5)

The above statement may sound counterintuitive, requiring the value of p to be greater than one to validate the data,

while robust stability requires p to be less than one. Consider the following relationship between u andy:

0 = [P22u- y] + P2,A(I - P_IA)-' [8:u]

:/322 + P2,A(I- P_,A)-'_2

(6)

where the plant _b = {Pl,,_2,P2.,g2 }. The existence of A satisfying (6) is equivalent to the plant not being

robustly stable, thus, the model is not invalidated by the experimental data if a(/5) > 1. In effect, this is an inverted

robust stability criterion.



Thevalidationalgorithmmakesuseof threesystemmatrices.Thefirstis Ptrue, which represents the true

dynamics of the system and is used to validate a given set of experimental data to determine a realistic set of

uncertainties. The second is P, om' which is a theoretical approximation of the system dynamics (derived from the

equations of motion), but does not take into account any unmeasured forces or unmodelled dynamics. This matrix is

scaled with the uncertainties found using Ptrue in the validation process to give the third matrix, '°rob, the system

matrix which includes a perturbation in the freestream velocity and is utilized in the/1 framework to determine the

change in freestream velocity necessary to drive the system to instability.

Equations of Motion for the 2 DOF Model

The implementation of the Flutterometer is demonstrated using a wing section mounted to the Nonlinear
Aeroelastic Test Apparatus (NATA) 23 in our wind tunnel (Figures 2 and 3). This system has been used extensively

to study both linear and nonlinear aeroelastic motion, as well as develop control strategies 4'5'6'24'25. The system

consists of a wing section mounted on a carriage and is restricted in motion to pitch and plunge degrees of freedom.

The bending and torsional modes of the wing are represented by springs and cams, which permit translational and

rotational motion. A data acquisition system measures the pitch and plunge dynamics of the system, as well as
provide control surface actuation, if applicable to the test. Figure 6 shows the schematic setup of the wing section

with the data acquisition system.

c=2*b

_j,/_ midchord

Figure 2. The aeroelastic system permits two degree-of-freedom motion. A control surface is attached tothe
trailing edge to provide controlled sinusoidal forces during tests.

Figure 3. The model support system (NATA) permits prescribed nonlinear motion in two degrees of freedom.
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Figure 4. Data acquisition and active control schematic diagram for NATA tests.

Flutter conditions may be reached on this system with minimal concern of structural failure, and parametric

investigations of the system characteristics may be conducted, where the effect of changes on stiffness, elastic axis

position, mass distributions, as well as various nonlinear features, may be explored. For this investigation, a

linearized form of the equations of motion _ for the wing section mounted to the pitch-plunge system is used:

I,_b _ JL,_JL° _JL_J Lo
(7)

where h and a are the plunge and pitch coordinates respectively, m r is the total mass of the system, m w is the mass

of the airfoil section, x_ is the nondimensionalized distance from the elastic axis to the center of mass, b is the semi-

chord length, ch and ca are viscous damping terms, k h and k= are the pitch and plunge stiffness, and I a is the

moment of inertia of the airfoil about the elastic axis.

The aerodynamic lift and moment, L and hi respectively, are given by:

M =pU2bZsC,,a(a+-_+(_-a_b-_)+pUb_ C,,,ofl

(8)

where p is the air density, U is the freestream velocity of the wind _nnel, s is the airfoil span, a is the

nondimensional distance from the midchord to the elastic axis, Ct_ and Clp are lift coefficients, Cm_ and C,,¢ are

moment coefficients, and fl is the flap deflection. For this experiment, a frequency sweep is used for the control

input. The values of all the parameters in the equations are listed below in Table 1.



Table 1: System Parameters

b 0.135 m m,2 1.664 kg

s 0.6m my 0.273 kg

% 2(0.3233)b-b-ab m ,, 0.114 kg

x a r g/b m w m +my +mm

kh 2844.4N/m m r 12+m I+m,.

k, 3.5895 N.rn/rad If 0,00681 kg.m 2

c h 27.43 N/m I,, 0.001735 kg.m 2

c a 0.036 kg.mZ/s lo 0.04325+ ?j + I,, + tnw%2

p 1.225 kg/m 3 Cip 3.358

Ct_ 6.28 C,,p -0.635

C,,, (0.5 + o)C,,_

Here, m a, mm, and n_c are the masses of the wing section without the control surface, the servomotor, and the control

surface respectively, and If and /m are the mass moments of inertia of the control surface and the servomotor

respectively.

The equations of motion are rearranged into state-space form and uncertainties in the parameters are introduced.
A detailed derivation of the uncertain model can be found in Reference 26, introducing a perturbation in the

freestream velocity, which is used to determine the flutter velocity through At-analysis, with the main points

summarized here. The uncertain plant model corresponds to the following equation:

Z U

Z M

Z s

Z A

_ Y

W U

W M

: P w s

W A

_P

(9)

where z U , ZM, ZS, and z A are input signals to the uncertainty block for freestream velocity, mass, damping and

stiffness, and aerodynamic coefficient uncertainty, while Wu, wM, Ws, and wA are the uncertainty feedback signals to

the plant from the uncertainty block. Equation (9) can be written as an LFT as shown in Figure 5.
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Figure 5. LFT of the uncertainty model for the pitch-plunge system.

where Au, AM, As, and AA, are the blocks that contain the uncertainties in the parameters. The uncertainty, 8u,

is introduced to the freestream velocity, weighted by W u :

U = U o + WuS U (10)

and is a convenient mathematical representation that allows operating conditions to be considered by setting 8v .

Similarly, the uncertainties and weights for the mass variables are:

m r = taro + WmrSmr

m.. = mwo + W,. W_.._

I_ = Ioo +W_o6_,,

and the damping and stiffness uncertainties:

c h = Cho + Wc_fiq

c, =c_ +Wcofico

k h : kho + Wk_5k_

k. =k_o +Wkofko

and finally, the aerodynamic parameters:

C.o = C.. +Wc.ofc. °

Cj/_ = C_,o + Wc,, 8c,_

C_ = C_po + Wc. _8c."

Table 2 shows the initial uncertainty weight scaling factors used for each parameter uncertainty.
multiplicative uncertainty has also been included in the uncertainty set.

(11)

(12)

(13)

An input



Table2: Uncertainty Weights for Associated Parameters

w._, 1

Win. 1

W,o 1

W. 2

WOo 0.003

_vk_ 140

Wk,, 0.17

W_,o 1

We.,, 1

Wc,_ 1

W_.. 1

W_. 0.2

The Flutterometer

The Flutterometer 9, developed at NASA Dryden Flight Research Center using the MATLAB ®/z-Tools software

package, was used to determine flutter and instability margins for the wing section. The Flutterometer predicts flutter

margins via a program that incorporates the/z-method to validate a system model against experimental data. Wavelet

filtering processes have been incorporated with the /z-method for model identification. 27'28 Recently, the

Flutterometer has been implemented on-line during flight tests on an F/A-1 8 research aircraft in which flight data at
various test points was gathered and the flutter envelope determined 8. The use of the F/A-1 8 explored the

advantages of the Flutterometer over traditional methods 8'9. Using the equations of motion that describe the response

of the pitch-plunge system, Ptrue was determined for the freestream velocity of each set of experimental data and an

appropriate set of uncertainties was established. The model uncertainties were updated until the experimental data

lay between the upper and lower bounds of the structured singular value. The second model, Pno,_, was also

determined as an approximation to the pitch-plunge system at a model velocity, Umoaet . Once an appropriate model

was determined, Prob was determined from Pnom by scaling Pnom with the determined uncertainties and a variation

was introduced to the freestream velocity as an additional uncertainty (as shown in Figure 5). Finally, the

perturbation in the freestream was evaluated until the system was found to become unstable.

Summary of Results

Two methods were initially used to theoretically evaluate the flutter velocity: i) a classical V-g diagram

approach, and ii) a robust stability analysis approach 9 using the structured singular value, At. For both methods, an

analytical model of the pitch-plunge system was used, detemxined from the equations of motion. For the first

approach, an LFT was formed with the nominal model of the system at a given model velocity, U,,oaet. An

aeroelastic model was evaluated at different values of freestream velocities by varying 8 U (i.e., Umodel+ fie' = U,,e_),

where dtJ is updated by a bisection search. At each new velocity, the eigenvalues of the system are evaluated until

the velocity at which the system becomes unstable is reached. In turn, this velocity is used to determine the critical

dynamic pressure at which flutter occurs. Figure 6 shows a typical plot of the linear pitch-plunge aeroelastic system,

which would undergo flutter motion when reaching a destabilizing velocity. This plot was produced for



k a = 3.5895 N-m/rad and a = -0.68. Beyond the critical velocity, the two aeroelastic frequencies coalesce thus

indicating classical flutter that occurs as seen by the coupling of the two modes 9. For different physical properties,

another type of phenomenon is observed for the same system as shown in Figure 7, where a = -0.4. Rather than

under going flutter, the system undergoes aeroelastic divergence z9. The aeroelastic system fails, due to static

instability, when it approaches this velocity. The freestream velocity at which divergence occurs is where one of the

modal frequencies reaches zero. For approximately a < -0.6, divergence is predicted; for a > -0.6, classical

flutter is predicted. We note that a = -0.5 represents the quarter-chord of the wing, which also represents the

aerodynamic center and the center of pressure.

.+/
/

i i i i__

Figure 6. V-g plot for the pitch-plunge system indicating flutter for a = -0.68.
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Figure 7. V-g plot for a pitch-plunge system approaching divergence velocity.

The second approach makes use of an LFT of the system with the parametric and dynamic uncertainties, as well as

5 u . For a given model velocity, Umodet, the uncertain system model is fonaaed. An initial 6 U is chosen and the

system is scaled by the uncertainties and by Wu&_;, as described by equations (10)-(13). The structured singular

value, /a, is evaluated for the scaled system and W U is iteratively updated by W u /p to rescale the velocity

perturbation (since the velocity is the perturbation parameter of interest, and, applying the definition of p here,

/z=l/(Wudv) ). The process is repeated until /_<1. The predicted flutter velocities for each model are

summarized in Table 3. For a = -0.68 and U,,odel = 6 m/s, the V-g approach predicted a flutter velocity of

15.1791 m/s while the ,u prediction gave 14.304 m/s. Note that for each model velocity, the predicted flutter
velocities compare extremely well with the nominal case. No matter what model velocity was used initially, the

same flutter velocity could be predicted. For any given initial model velocity, the predicted flutter velocities using



theV-gmethodagreedwithintheorderof 0.0001betweenmodelsasshowninTable3. Whilethesametypeof
agreementisdesiredhere,theresultsfromtherobuststabilityanalysisdifferedalittlemorebetweenmodels.This
differencecanbeexpectedsincethemodelisbeingapproximatedat eachvelocity,anduncertaintieshavebeen
introduced.Thefluttervelocitypredictionsobtainedfromrobuststabilityanalysisarealwayslessthanthenominal
predictions.

Table 3: Predictions of Flutter Velocities for a=-0.68 for the Analytical Model

U,_o.e_(m/s) u_ .........(m/s) Ur ........ (m/s)

6 15.1791 14.304

7 15.1793 14.386

8 15.1796 14.479

Experiments were then performed for freest'ream velocities up to -10 m/s, slowly approaching the flutter

velocity, but not actually achieving it. Using simulated data, the Flutterometer predicted flutter velocities of

approximately 13 m/s for the linear setup. The system itself has been observed to undergo flutter at a freestream
velocity of ~14 m/s on the linear configuration. A command input to the trailing edge control surface was entered

(with a steadily increasing frequency) and the response was measured. Initially, the command input was started at 1

Hz and increased 0.5 Hz every 10 cycles for approximately 45 seconds. This frequency selection did not capture the

modes between 1.6 and 2.3 Hz (where the natural frequencies of the pitch and plunge modes lie). The first

frequency sweep time history is shown in the Figure 8. The frequency sweep was then modified to start at 1.5 Hz
and increase by 0.2 Hz every 10 cycles. Figure 9 shows this time history.

..... e
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Figure 8. Time history of frequency sweep. A 0.5 Hz change in frequency is provided every 10 cycles.

The initial test frequency is 1 Hz.

The experimental data was compared to a simulation from the linear model using the same input history. Some

significant differences were noted between the two results, particularly in the pitch mode, as is shown in Figure 10,

for a freestream velocity of 9.29 m/s. Interestingly, when the model response was multiplied by 2.5, both data sets

compared nicely. It was not understood what caused the differences in amplitude, but the frequencies were in exact
agreement.
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Figure 9. Time history of frequency sweep. A 0.2 Hz change in frequency is provided ever), 10 cycles.
The initial test frequency is 1.5 Hz.

With the experimental data obtained, the Flutterometer showed no convergence (the p value initially computed

was too high and would require a substantial number of iterations for the method to converge, if it was possible for

this particular set of data, but was terminated early, with no results obtained). The amount of uncertainty required

was too great to place the experimental data within the p-bounds. See Figures 11 and 12 for the time history of the
pitch motion, with the model data included for comparison. Using this disagreeing experimental data in the

Flutterometer resulted in a non-convergence of the algorithm to any flutter velocity, and an extremely high

computational time.

Figure 10:

i h h J L __

7L PH

Time response of pitch motion, comparing experimental to simulated response.
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Figure 11: Time response of pitch motion, with model response multiplied by 2.5.

A sensitivity analysis was performed to examine how much error can be introduced into various parameters to
determine the quality of the flutter velocity predictions due to model errors. Uncertainties, one at a time, of 30

percent were introduced into the stiffness, mass, viscous damping, and aerodynamic coefficients, and simulated data

was produced with this erroneous model. The Flutterometer predicted a flutter velocity of 11.7 m/s. In addition, a
30 percent uncertainty was also introduced into all the aerodynamic coefficients at the same time. Again, the

predicted flutter velocity was 11.7 rn/s. The Flutterometer showed no sensitivity to the above parameter changes and

converged to a flutter velocity. A second sensitivity test was also performed using simulated data by adding random
noise at the input and the output to investigate how much error in the data the Flutterometer could tolerate. It was

found that if the random noise level added to the simulated data was less than 0.0003, the Flutterometer converged in
five iterations to a predicted flutter velocity of 11.7 m/s, else, no convergence was achieved. Note that the above
tests were performed for a = -0.68.

One explanation for the anomalies seen in Figure 10 is the fact that the model used in the data validation process
was valid for small angles of attack. The rather large pitch amplitudes may be affected by aerodynamic stall effects,

which contribute to significant nonlinear responses not accounted for in the model. Stall effects are briefly described

in Reference 30. This type of behaviour has also been observed in experiments described in Reference 5.

A second explanation is that the commanded deflection for the control surface was not the actual deflection the

control surface was undergoing. The wing section model used did not have any method for measuring the true

control surface deflection, as the actual deflection would have been more appropriate to use as the input to the
system.

Concluding Remarks

A flutter predicting methodology, the Flutterometer, was examined as a technique to predict the occurrence of

flutter. Classical predictions were made using a V-g approach and a p-analysis approach. By using the freestream

velocity as an uncertainty parameter, a matched-point solution is achieved for the flutter velocity for the V-g

approach, no matter what operating freestream velocity is selected for the model. Using the Flutterometer, an
attempt was made to implement experimental data to the Fiutterometer. An analytical model was determined for the

wing section system at a particular velocity and the uncertainties updated. Unfortunately, since the experimental data

did not agree well with the response produced by the model, particularly in the pitch degree of freedom, the result

was a non-converging process, with high computational time. A sensitivity analysis showed that the Flutterometer

algorithm worked well for small errors. Some of the observed responses, particularly the large pitch amplitudes,
could not be adequately explained. In this case, improvements to the current model/experiment hardware associated
with our two degree-of-freedom system should be examined.
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